
VOICEXML 2.0 AND THE W3C SPEECH INTERFACE FRAMEWORK

Jim A. Larson
Intel Corporation

jim.a.larson@intel.com

1.1. ABSTRACT

The World Wide Web Voice Browser Working Group has
released specifications for four integrated languages to developing
speech applications: VoiceXML 2.0, Speech Synthesis Markup
Language, Speech Recognition Grammar Markup Language, and
Semantic Interpretation. These languages enable developers to
quickly specify conversational speech Web applications that can
be accessed by any telephone or cell phone. The speech
recognition and natural language communities are welcome to use
these specifications and their implementations as they become
available, as well as comment on the direction and details of these
evolving specifications.

1. BACKGROUND

Since the release of the VoiceXML 1.0 specifications by the
VoiceXML Forum in July 2000, developers have implemented
and deployed dozens of VoiceXML browsers. VoiceXML 1.0
has enabled application developers to create and deploy
thousands of conversational speech applications.

In May 199,9 the World Wide Web Consortium (W3C) chartered
the Voice Browser Working Group (VBWG) to prepare and
review markup languages that enable voice browsers. Members
meet weekly via telephone and quarterly in face-to-face meetings.
The VBWG is open to any member of the W3C Consortium.
VBWG members include the founding companies of the
VoiceXML Forum, telephony applications venders, speech
recognition and text-to-speech engine venders, Web portal
companies, hardware venders, software venders, and appliance
manufacturers.

2. W3C SPEECH INTERFACE
FRAMEWORK

The VBWG has recently released draft specifications for four
new languages making up the W3C Speech Interface Framework.
The VBWG has clarified the syntax and semantics of VoiceXML
1.0, called VoiceXML 2.0, and has developed three additional
related languages for speech recognition grammars, speech
synthesis, and semantic interpretation. All four languages are
XML languages that use tags to describe language elements.

Figure 1 illustrates an example of how the four languages work
together to describe conversations speech interfaces.

<field name="recipient">

 <prompt>
 Welcome to the
 <emphasis level = "strong">
 electronic payment system
 </emphasis>
 <break time = "500ms"/>
 Whom do you want to pay?
 </prompt>

 <grammar>
 <rule id= "recipient">
 <one-of>
 <item> Ajax </item>
 <item>
 <tag> 'Drugstore' </tag> Ajax
 </item>
 <item> Stanley </item>
 <item>
 <tag> 'Supermarket' </tag> Stanley
 </item>

 </one-of>
 </rule>
 </grammar>

</field>

Figure 1. Example VoiceXML code (regular font) with embedded
speech synthesis (italics), speech grammar (bold) and semantic
interpretation tags (underlined text).

The <prompt> tag contains text that is converted to spoken
speech by a speech synthesis engine. The <grammar> tag
defines the grammar of words and phrases used by a speech
recognition engine to convert speech into text. Together, the
<prompt> and <grammar> tags define a <field> into which a user
places a value by speaking. The following briefly describes the
four languages illustrated in Figure 1.

3. THE FOUR INTEGRATED LANGUAGES

The following briefly describes each of the four integrated
languages of the W3C Speech Interface Framework:

3.1. VoiceXML 2.0

VoiceXML 2.0 specifies the basic structure of conversational
dialogs. In Figure 1, VoiceXML tags (shown in regular font)
describes a field consisting of a prompt to be read to the user by
the speech synthesis engine and a grammar to be used by the
speech recognition engine to listen to the user’s response. The
W3C Voice Browser Working Group examined nearly 300 change
requests and made many clarifications and minor enhancements
to VoiceXML 1.0. Probably the most significant addition is a
<log> tag that enables developers to create and debug messages
and collect data for performance analysis. Both VoiceXML 1.0
and 2.0 are able to describe system-directed and mixed initiative
conversational dialogs.

3.2. Speech Synthesis Markup Language

The Speech Synthesis Markup Language enables developers to
specify instructions to the speech synthesizer about how to
pronounce words and phrases. Based on the Java Speech
Markup Language (JSML) specification, the Speech Synthesis
Markup Language provides tags for specifying the structure
(<sentence> and <paragraph>), pronunciation (<sayas> and
<phoneme>), poetics (<emphasis>, <break>, and <prosody>),
and the use of prerecorded audio files (<audio>). In Figure 1,
speech synthesis tags are shown in italics. They illustrate how to
emphasize the name of the field and how to insert a pause.
Developers use speech synthesis tags when they want to
improve the speech synthesizer’s default presentation of a
prompt.

3.3. Speech Recognition Grammar Specification

The Speech Recognition Grammar Specification enables
developers to describe the words and phrases that can be
recognized by the speech recognition engine. The syntax of the
grammar format has two forms. The form shown in Figure 1
uses XML elements to represent a grammar. The form shown in
the bold font in Figure 2 uses an augmented BNF format, which
is similar to many existing BNF-like representations commonly
used in the field of speech recognition. The two forms are
equivalent in the sense that a grammar that is specified in one
form may also be specified in the other. Both forms are modeled
after the JSpeech Grammar Format.

 <grammar>
 $recipient = Ajax
 | Drugstore {'Ajax'}
 | Stanley

 | Supermarket {'Stanley'};
 </grammar>

Figure 2. Example of the ABNF grammar format (bold text) with
embedded semantic interpretation tags (underlined text).

3.4. Semantic Interpretation

Semantic Interpretation tags enable developers to compute
information returned to an application using grammar rules and
tokens matched by the speech recognition engine. As examples,
if the speech recognition engine recognizes the phrase
“Drugstore,” the underlined semantic interpretation tags in
Figures 1 and 2 calculate the value to be returned as “Ajax.”
Likewise, “Stanley” is returned in place of “Supermarket.”
Semantic interpretation tags can also be used to extract
information from a user utterance, perform calculations, and
assign values to multiple variables. The Semantic Interpretation
tags were designed to be very similar to a subset of the
ECMAScript language.

4. FUTURE LANGUAGES

The VBWG has also published requirements and working drafts
of other languages within the W3C Speech Interface Framework,
including:.

4.1 N-gram Grammar Markup Language

Context-free grammars are widely used in conversational systems
to model what the user may say at each specific point in the
dialog. However, it is difficult or impossible to write a context-
free grammar that can process all the different sentence patterns
users speak in spontaneous speech input applications. Context-
free grammars are not sufficient for robust speech recognition and
understanding tasks or for free-text input applications such as
dictation.

In contrast, N-gram language models rely on the likelihood of
sequences of words, such as word pairs (in the case of bigrams)
or word triples (in the case of trigrams) and are therefore less
restrictive. The use of stochastic N-Gram models have a long and
successful history in the research community and iare being used
in commercial systems, as the market asks for more robust and
flexible solutions. N-Gram grammars have the advantage of being
able to cover a much larger language than would normally be
derived directly from a corpus. Open vocabulary applications are
easily supported with N-gram grammars.

N-gram grammars are typically constructed from statistics
obtained from a large corpus of text using the co-occurrences of
words in the corpus to determine word sequence probabilities.
Developers should never need to create an N-gram grammar by
hand.

4.2. Natural Language Semantics Markup Language

The Natural Language Semantics Markup Language supports
XML semantic representations. This application-independent
information includes confidences, the grammar matched by the
interpretation, speech recognizer input, and timestamps. For
example, suppose the user responds to a system request by
saying, “I would like a large Coca Cola and a large pizza with
pepperoni and cheese.” The semantic is first converted to XML
structure in Figure 3.

<result>
 <interpretation>
 <instance>
 <order>
 <pizza>
 <number>1</number>
 <size>large</size>
 <topping>pepperoni</topping>
 <topping>cheese</topping>
 </pizza>
 <drink>
 <number>1</number>
 <size>large</size>
 <liquid>coke</liquid>
 </drink>
 </order>
 </instance>
 <input mode="speech">
 I would like a large coca cola and a large
 pizza with pepperoni and cheese.
 </input>
 </interpretation>
</result>

Figure 3. Natural Language Semantic Language example

Additional information, including confidence scores and input
mode (speech) is inserted into this structure, resulting in the
representation illustrated in Figure 4, which is suitable for
additional natural language processing.

 <result grammar="src='pizza_order.grm' ">
 <interpretation confidence="100" >
 <instance>
 <order>
 <pizza>
 <number>1</number>
 <size>large</size>
 <topping confidence="100">
 pepperoni
 </topping>
 <topping confidence="100">
 cheese

 </topping>
 </pizza>
 <drink confidence="100">
 <number>1</number>
 <size>large</size>
 <liquid>coke</liquid>
 </drink>
 </order>
 </instance>
 <input mode="speech">
 I would like a large coca cola and a large
 pizza with pepperoni and cheese.
 </input>
 </interpretation>
</result>

Figure 4. Natural Language Semantic Language example
with confidence factors.

4.3 Other Future Languages

Other future languages include:

• Reusable Modules are reusable components that
meet specific interface requirements. The purpose
of reusable components is to reduce the effort to
implement a dialog by reusing encapsulations from
common dialog tasks and to promote consistency
across applications.

• The pronunciation Lexicon Markup Language
enables open, portable specification of
pronunciation information for speech recognition
and speech synthesis engines.

• The Call Control Markup Language enables the
management of telephone calls and conferences.

5. COMMUNITY PARTICIPATION

The speech and natural language communities are welcome to use
the above specifications, and their implementations as they
become available. Reusing thee specifications and
implementations avoids reinventing

the languages and makes the implementation easer to productize.
Details about these languages can be viewed at
www.w3.org/voice. Anyone in the speech and natural language
communities is also welcome to comment on these languages by
sending an e-mail to www-voice@w3.org.

7. SUMMARY

The W3C Speech Interface Framework languages will be used to
implement commercial quality speech and natural language
applications. The VBWG solicits advice about the direction and
details of these evolving languages.

