
A Clarification Algorithm for Spoken Dialogue Systems

Charles Lewis Giuseppe Di Fabbrizio

AT&T Labs – Research
180 Park Ave – Florham Park, NJ 07932 - USA

{clewis,pino@research.att.com}

Abstract
This paper presents an algorithm for spoken dialogue systems
that uses mixed initiative interactions and identification of
multiple call-types to efficiently clarify the needs of the user.
The representation of the application domain includes the
relationships between key topics in the domain, the prompts
used to discern between these topics, and the call-types
associated with the topics. This representation is used by the
algorithm to maintain the state of the conversation. By
maintaining a picture of how all of the information conveyed
by the user fits into this domain, regardless of whether it was
information specifically requested by the system, the
algorithm expedites the clarification process.

1. INTRODUCTION
Natural language spoken dialogue systems (SDS) are usually
designed around a flowchart representation that guides the
user through a series of subtasks, where each question permits
a limited range of responses that are put together to discern the
reason for the user’s call. Although effective, the approach
does not take advantage of information volunteered by the
user which could speed up the process and improve the user
experience.
In the approach presented here, a rooted tree data structure is
used to represent the dialogue strategy and the relationships
between topics. There are several spoken dialogue systems in
the literature that use tree-based data structures to model the
system knowledge and to disambiguate and clarify the user’s
inputs. In [1] and [6] an object oriented paradigm is used to
represent the system task knowledge and to generate
semantically consistent inputs. In this case a Boolean formula
minimizes the number of rules needed to describe consistent
inputs within the inheritance hierarchy. The application tree in
[2] shows a similar approach applied to the DARPA
Communicator system where nodes are also constrained by
attribute values and rules to express relationship between
nodes. Similarly the tree based dialogue in [3] that introduces
concept ranking. Finally, the COLLAGEN task-model [4]
adopts a general computational model that addresses semantic
and referential ambiguities and some grade of dialogue
repairs.
The algorithm presented here operates on a compact and
effective representation of topic hierarchy or task ontology.
The algorithm shortens the length of the dialogue by utilizing
all the information offered by the user, including contradictory
information. The representation is a concept hierarchy that
includes descriptions of the semantic categories the user can
reference. The user input is matched to these descriptions, and
then one or more system questions are retrieved from the tree
to further discern the user needs. The algorithm uses a
semantic representation ofthe input to navigate down the tree

from the node that suggests the most general possible question
to one of the leaves of tree. Each leaf indicates a specific
topic that the system can address.
This paper demonstrates the algorithm through an Internal
Revenue Service (IRS) voice application that was built as a
prototype. We’ll use this prototype to demonstrate how the
algorithm exploits this hierarchical data structure to interpret
various types of input from the user. The algorithm has been
implemented in the AT&T Spoken Dialogue System as part of
the AT&T VoiceTone® service available to AT&T’s business
customers. This is part of the dialogue manager framework
described in [7] that shows how different dialogue
management strategies and algorithms can be mixed together
using the concept of flow controllers (FC) and how they share
dialogue state and execution history.

2. THE ALGORITHM
2.1. The SLU module
In our system, the user’s input, in text form, is passed to a
spoken language understanding (SLU) module. The SLU maps
the input to a semantic representation that depends on the
application domain and a collection of predefined call-types.
Different technologies can be used to achieve this goal. Our
system is based on an extended version of the boosting-style
classification algorithm described in [5]. This classifier can be
trained with both labeled data and hand-written rules.
Consider as an example the utterance I need tax information to
file my tax returns in the context of the automated IRS
customer care system. Assuming that the utterance is
recognized properly by the automatic speech recognizer
(ASR) or typed in as simple text, the corresponding call-type
should be Request(Tax_Info), which is used by the
clarification algorithm to generate a subsequent clarification
prompt: I can help you with contact info, individual returns,
business returns, or charitable organization returns.
Similarly, the utterance Do you have any resources for small
businesses? corresponds to the two call-types Business(Small)
and Request(Resource).

2.2. Application Representation
The central data structure used by this algorithm is a rooted
tree. Each leaf of the tree represents a successful
classification of the user's needs, and each internal node
represents a category. A node is defined by a Boolean
expression in terms of call-types, confidence assigned to the
prediction of the used classifier, and references to the dialogue
history. A similar Boolean expression is used to test for the
“redo” condition (see section 3.3) for the entire tree. The
application author creates this tree and the prompts played for
the user as the tree is traversed. Each node in the tree can be
described as either lit or not lit. There is a Boolean flag to
describe this state. The algorithm also labels one node as the

focus. The focus of the tree moves from node to node as the
tree is traversed. Finally, each node has a set of prompts, used
when that node is the focus. In summation, a node is
composed of:

• A flag indicating lit status;
• Boolean expressions;
• Prompts;
• Pointers to child nodes, and the parent node.

A tree consists of:

• A root node;
• A pointer to the focus;
• A ‘redo’ Boolean expression

The prototype system uses XML documents to store the
information described above and a run-time interpreter to
execute the algorithm that generates VoiceXML code for the
VoiceXML interpreter which controls the implementation
platform or interactive voice response system. An XPath
language interpreter provides flexible ways to query the SLU
output and allows the author to easily write complex logical
expressions in the tree nodes [8] based on the user input.
Figure 1 shows a snippet of XML code representing a node in
the tree.
<actiondef name="individual"
 text="I have info about EFiling and filing if
you're self-employed. Which would you like?"/>
...
<node name="individual" parent="intro">
 <conditions>
 <ucondoper="xpath" expr="//class
[@name='individual']"/>
 </conditions>
 <actions>
 <action>individual</action>
 </actions>
</node>

Figure 1. Example of node

In this example, XPath is used to extract a call-type from the
SLU results, as described in [8]. The action associated with
this node (named “individual”) is a prompt that requests
information to further narrow down the user’s needs. The
actiondef tag defines the prompt the system plays when
the node is active. The attribute parent of the tag node
(named “intro”) is a unique identifier pointing to the parent
node. In the definition, the lit flag and pointers to child nodes
are not defined. The former is controlled by the algorithm,
and the latter are derived from the parent node pointers.

3. ALGORITHM EXECUTION
3.1. Standard Execution
The algorithm has three steps. In the first step, input is
solicited from the user. The prompt used here depends on the
current focus node. Each node can have one or more prompts.
Additional prompts allow the system to re-query the user (if
needed) with different prompts.
Once the algorithm has received input, the other two steps are
used to move the focus of the tree. They are repeated until the
focus does not change, or a leaf is reached. If the focus does
not change, the system prompts the user for more input. If a
leaf is reached, the algorithm is complete.

The second step calculates the lit flag for unlit nodes in the
sub-tree rooted at the focus node, excepting sub-trees that
have been specifically eliminated. The lit flag for a node is
true if the Boolean condition for the node is satisfied. These
conditions depend on the classification call-types of the input,
the confidence scores assigned to the input, and relevant
dialogue history queries. This is the step that allows the
algorithm to take advantage of user initiative. Every node that
can be lit is lit. Also, once a node is lit, it stays lit; so previous
utterances from the user are taken into account in the process.
In the third step, the lit nodes are used to move the focus of
the tree. The goal is to move the focus away from the root of
the tree until it reaches a leaf. The only exception to this is
the when the “redo” condition of the tree is satisfied (see
section 3.3).
The focus moves towards the leaves by traversing the tree to
the lowest common ancestor of the lit nodes in the sub-tree
below its current location. The new ancestor does not need to
be a lit node. The other way that the focus moves towards the
leaves of the tree is by jumping to a direct descendant which is
lit. In this case, branches of the tree which contain lit nodes
may be pruned off. The first case determines the most specific
category that the user utterances have indicated, without
eliminating any of the lit categories. The second case can
eliminate lit nodes that are not immediately relevant to the
current focus.

3.2. Competing Children
In the case where more than one direct descendant of the focus
node is lit, the dialogue must revert to a directed dialogue to
eliminate unwanted branches. One possible way to do this is
to assign a confirmation prompt to each node below the root of
the tree, which is a simple yes-no question to determine if the
category is the one that the user wants. When more than one
direct descendant of the focus is lit, the algorithm should
iterate through them, asking the category prompt for each. If
the reply comes back positive, the focus is moved to that node.
If negative, that node and its descendants are trimmed from
the tree, and removed from further consideration. This can be
repeated until there is only one direct descendant of the focus
that is lit.

3.3. The Redo Condition
When the redo condition is met, the algorithm will
incrementally step back through the tree to allow the user to
change their choices. This process supplants the normal steps
for changing the focus.
If any direct descendents of the focus have been pruned (as in
the “competing children” condition described in the previous
subsection), they are all restored and the focus remains the
same. Otherwise, the focus moves away from the leaves of
the tree, back to the previous focus node. Any branches that
have been pruned from the restored focus node will be
restored.
Obviously, if the focus is already the root, and no children
have been pruned, it cannot be rolled back further. One
possible way of handling this circumstance is by failing out of
the dialogue if this is attempted too many times.

4. AN EXAMPLE
To demonstrate this algorithm, we’ll look at the IRS
application prototype that we have developed. The purpose of
this application is to provide information to the user about tax
topics. The user may not know how to describe the
information that they want, so the algorithm will be used to
clarify their inquiries.
As described above, the first step is to author a category tree.
The tree for this example is shown in Figure 2. Figure 3 is the
legend for all tree diagrams in this paper.

Individual CharityContact Info

EFile Self-Employed

9-11 Tax Exempt

Charitable
Contributions Small Mid-to-Large

ResourcesTax Shelters

Calendar

Regulations

Intro CD

Tax Shelters

Business

Tax Info

Figure 2: The category tree for the IRS example.

The sample tree has ten leaves. Each leaf represents
information that the application can give to the user, such as
how to electronically file (EFile) their taxes or how to get an
informative compact disc (Intro_CD) about tax regulations.
The intermediate nodes represent categories that can be used
to navigate through the tree. Initially no nodes are lit, and the
root is the focus.

Unlit node

Focus node

Lit node

Figure 3: Tree legend

4.1. Example 1: System initiative
This simple example demonstrates the process of guiding the
user to what they want through system initiative. Each node
has one or more ways of prompting the user to choose one of
its children. The “Tax Info” node is the focus when the
exchange starts.

• System: Hello, this is the automated IRS customer
service system. How may I help you?

• User: I need Tax Information.
The phrase “Tax Information” does not change the focus. The
Tax Info node tries a different prompt.

• System: I can help you with contact info, individual
returns, business returns, or charitable organization
returns.

• User: Individual returns.
This lights the node labeled “Individual”, and the focus goes
there. The relevant part of the tree at this point is shown in
Figure 4:

Individual

EFile Self-Employed

Tax Info

Figure 4: The category tree after the focus changes to

the “Individual” node

• System: Would you like to hear about e-filing or self-
employment?

• User: Electronic filing.
• System: Electronic payment options are convenient, safe

and secure methods for paying income taxes. If you have
a balance due, you can e-file and pay in a single step by
authorizing an electronic funds withdrawal from your
bank account. …

After receiving the user’s reply to the new prompt, the node
labeled EFile is lit and becomes the focus. This is a leaf node,
so the algorithm has run its course. The user is given
information about how to EFile.

4.2. Example 2: Category clarification after user initiative
This example shows how the algorithm requests category
information from the user when more than one node is lit by
input from the user.

• System: Hello, this is the automated IRS customer
service system. How may I help you?

• User: I need to find out more about tax shelters.

Small Mid-to-Large

ResourcesTax Shelters

Calendar

Regulations

Intro CD

Tax Shelters

Business

Tax Info

Figure 5: The category tree after the focus has moved

to the “Business” node

This input satisfies the Boolean conditions of the two nodes
labeled ‘Tax Shelter’. Their most specific common ancestor
node, Business, becomes the new focus node (Error!
Reference source not found.).

• System: Are you a small business, or a mid-to-large sized
business?

• User: A small business.
This satisfies the Boolean condition for the node labeled
“Small”. Since it is a direct child of the focus node, it
becomes the new focus (Figure 6). This prunes off a branch
that contains one of the lit nodes.

Small

ResourcesTax Shelters

Calendar Intro CD

Figure 6: The category tree after the "Small" node

becomes the focus.

When the algorithm is applied a second time (without
requesting additional input from the user), “Tax Shelter”
becomes the new focus because it is a direct child of ‘Small”.
The algorithm is always applied until the focus node remains
unchanged or a leaf node is reached. “Tax Shelter” is a leaf
node so the disambiguation is complete.
Multiple nodes of different types can also be lit up by a single
utterance. In the previous example, if the first user utterance
had been I need to find out more about small business tax
shelters, the clarification algorithm would have advanced the
focus all the way to the leaf node (the focus would have gone
from ‘business’ to ‘small’ without any further input, because
small is a direct descendent that would have been lit by this
utterance).

4.3. Redo Example
To demonstrate a “redo” action, let’s say that the “Resources”
node is also lit in the last step of the previous example, shown
in figure 6. This would prevent the focus from automatically
moving to the “Tax Shelters” leaf after “Small” becomes the
focus. Instead, the algorithm returns initiative to the user. If
the user tries to back out of the system by saying, for example,
“Go back,” and the “redo” condition for the tree matches the
call-type generated by this phrase, then the algorithm will
undo the changes made to the structure in the previous turn.
In this example, when the “redo” condition is met the focus
moves back to the node, “Business”, and the lit status of the
node “Small” is changed back to not lit. This is the situation
in Figure 5 (except in this example “Resources” is also lit).
The user can now indicate that they have a mid-sized or large
company and explore the other sub-tree under the “Business”
node.

4.4. Mixed Initiative
The benefits of a mixed initiative strategy are leveraged here
by allowing the user to express their interests as completely as
they can before the system takes the initiative and presents
questions to clarify the final topic. This can avoid a long series
of unnecessary questions, or a prompt with a long list of
possible options. When system initiative is used, the options
presented by system prompts can be constrained to short lists
to take advantage of the category tree structure. In the case
where a user is unfamiliar with the options available, they can
still cede initiative completely, and allow the system to guide
them through the hierarchy of topics to their final choice.

5. CONCLUSIONS
The algorithm we’ve presented here uses a simple,
hierarchical description of the application topic tasks to both
guide and expedite the clarification process. Through this
process, vague subject references are systematically clarified
to arrive at defined subjects. The combination of mixed
initiative and multiple call-types per utterance is key to this
algorithm, which leverages everything that the user has said to
expedite the clarification process. For users who take the
initiative, this produces shorter dialogues, and dialogues that
require less repetition than simple directed dialogue systems.

6. REFERENCES
[1] A. Abella and A.L. Gorin, “Generating Semantically

Consistent Inputs to a Dialog Manager”, Proc.
Eurospeech, Rhodes, Greece, Sep. 1997.

[2] E. Ammicht, E. Fosler-Lussier, and A. Potamianos,
“System and method for representing and resolving
ambiguity in spoken dialogue systems”, Proceeding of
Eurospeech, vol. 3, pp. 2217-2220, Aalborg, Denmark,
September 2001

[3] K. Macherey and H. Ney “Features for Tree-Based
Dialogue Course Management”, In Proc. European
Conference on Speech Communication and Technology,
Vol. 1, pp. 601-604, Geneva, Switzerland, September
2003

[4] Rich, C.; Sidner, C.L.; Lesh, N.B., "COLLAGEN:
Applying Collaborative Discourse Theory to Human-
Computer Interaction", Artificial Intelligence Magazine,
Winter 2001 (Vol 22, Issue 4, pps 15-25)

[5] R. E. Schapire and Y. Singer, "Boostexter: A boosting-
based system for text categorization", Machine Learning,
39(2/3):135-168, 2000

[6] A. Abella and A. Gorin, “Construct Algebra: Analytical
Dialog Management”, Proc. ACL, Washington D.C.,
June 1999.

[7] G. Di Fabbrizio and C. Lewis, “Florence: a Dialogue
Manager Framework for Spoken Dialogue Systems”,
Proceedings of the 8th International Conference on
Spoken Language Processing (ICSLP 2004) , Jeju, Jeju
Island, Korea, October 4-8, 2004.

[8] G. Di Fabbrizio and C. Lewis, “An XPath-based
Discourse Analysis Module for Spoken Dialogue
Systems”, The Thirteenth International World Wide Web
Conference, New York NY, May 17-22, 2004.

