
m
-Com

m
erce

B U S I N E S S B R I E F I N G : W I R E L E S S T E C H N O L O G Y 2 0 0 2

147

Technology > Voice Recognition

Speech recognition will soon allow anyone to
access the Internet from any mobile device
using vocal orders, through phones or even in
the car. Voice XML was first introduced in
1999 and has achieved wide acceptance in the
industry.

The specification builds on existing mark-up
languages such as HTML, XML and WML,
and the introduction and development of
the voice Web gives service providers a
simple and cost-effective means of deploying
innovative speech applications for end-users.
Companies will soon be able to use this
technology to satisfy their users’ need to be
informed anywhere, anytime.

An open-source standard – VoiceXML – allows
voice applications to be developed in the same
manner as Web applications, and connect to a
server and database. The availability of
differentiated, advanced voice services based on
Internet Protocols (IPs) will enable service
providers to strengthen links with the Internet and
bring interactivity closer still.

This article will introduce the essentials for
building a VoiceXML application. Following is the
code for the obligatory ‘Hello World!’

application, an application that indicates that it is
the user’s first VoiceXML application.

1. <?xml version=”1.0”?>

2. <vxml version=”1.0” mode=”TTS”>

3. <!—

4. This example shows the basic

requirements for a

5. VoiceXML Application.

6. —>

7. <form>

8. <block>

9. <prompt>Hello World! This is my first

VoiceXML

10. Application</prompt>

11. </block>

12. </form>

13. </vxml>

T a g s , E l emen t s a n d A t t r i b u t e s

The first two lines of the application:
<?xml version=”1.0”?>

<vxml version=”1.0” mode=”TTS”>

are mandatory for any VoiceXML application. Line 1 is
important as it indicates to people and XML parsers that
this is indeed an XML file. Line 2 is an opening tag that
identifies the remainder of the file as a VoiceXML file.
In XML and VoiceXML, all inform-ation is enclosed
by a pair of tags or is embedded in a tag. A tag is
identified by its angle brackets (< and >). Typically, an
opening tag, such as in line 2, is paired with a closing
tag. In this case, the closing tag is on line 13:
<vxml version=”1.0” mode=”TTS”>

...

</vxml>

Closing tags are identified by the backslash (/). The
opening and closing tags, taken together, form an
element. The VoiceXML opening tag on line 2
contains two attributes: version and mode. Attributes
are predefined variables that apply to an element. In
XML and, by extension, VoiceXML, all attributes are
declared as strings but they do not necessarily remain
so. The version attribute is assigned the value 1.0.
The mode attribute identifies the mode in which the
interpreting browser is to present the VoiceXML. In
this case, the mode is text to speech (TTS). Therefore,
the browser will convert voice prompts to sounds
using the available TTS engine.

Commen t s

Lines 3–6 begin with <!— and end with —>.
These indicate a comment block: essentially, notes left
by the developer. Comments are usually ignored by the
browser. However, certain symbols, such as the greater-
than sign (>), can fool the browser into thinking the
comment is complete. Therefore, care must be
exercised when using standard XML comments.

P r omp t s

The real action (what little there is of it) happens
inside the block element that opens on line 8 and

John Calvit is Product Manager at
Cambridge VoiceTech (VoiceXML
Italian Users Group) with over a
decade of software experience as a
technical writer, editor and
software developer. Mr Calvit’s
writing has won awards from the
Society of Technical Communication
for design and content.

a report by

J o h n C a l v i t

Cambridge VoiceTech on behalf of VoiceXML Italian Users Group

Bui ld Vo iceXML App l i ca t ions f rom a Windows Desktop

calvit_supp.qxd 13/1/02 2:37 pm Page 147

B U S I N E S S B R I E F I N G : W I R E L E S S T E C H N O L O G Y 2 0 0 2

148

Technology > Voice Recognition

closes on line 11. This is where the prompt element
at lines 9 and 10 is executed. A prompt element
outputs synthesised speech and prerecorded audio to
the user. (Note that the prompt text is actually
between the prompt tags in character data form.)

E l emen t H i e r a r c h y

VoiceXML is a hierarchical language. Each element
type is allowed only certain elements as ‘children’
and other elements as ‘parents’. The prompt on lines
9 and 10 is contained within a block element that, in
turn, is contained in a form element.

<form>

<block>

<prompt>Hello World! This is my first

VoiceXML

Application</prompt>

</block>

</form>

In VoiceXML, most procedures take place within
form elements or menu elements. Therefore, to
prompt the application to do anything, a form or menu
element must be included. However, the form
element cannot have a prompt element as a child,
but the block element can be a child of the form
element. Block elements provide execution for non-
interactive code.

A prompt element is non-interactive (i.e. there is no
user input) and therefore is allowed in the block
element. Thus, following the permissible hierarchy,
the prompt element is nested within the block
element, and the block element within the form
element. This element hierarchy may seem somewhat
confusing but it does provide a number of advantages,
including referencing and variable scoping.

L e s s o n – M enu s a n d F i e l d s

An example is used here of building a scheduling
application for conference rooms. The conference
room scheduler will be able to incorporate the date,
time and number of people and then inform the
attendees of the scheduled meeting via e-mail.

Before examining the conference room features, the
menu elements must be considered. A menu element
combines a prompt with input capture and a ‘go-to’
or ‘switch’ capability to route execution of the
application. When the phrase, “Say or press one to
[do something], say or press two to [do something
else]” is heard, it indicates a menu.

This lesson will demonstrate how a menu captures
user input and then evaluates that input to route the
control. Also included are examples of how to deal

with instances when users fail to input valid choices
or do not provide any input at all.

1. <?xml version=”1.0”?>

2. <vxml version=”1.0”>

3. <!—

4. This example shows the basic

requirements for a

5. menu in a VoiceXML Application

6. —>

7.

8. <menu>

9. <prompt>Welcome to the Cambridge

Conference Room

10. Scheduling

System.<enumerate/></prompt>

11. <choice nextitem = ”databaseForm

”>database

</choice>

12. <choice nextitem =” withoutForm”>

without </choice>

Line 8 is the opening tag for the menu. The menu starts
with the prompt: “Welcome to the Cambridge
Conference Room Scheduling System.” However,
there is an additional element: the enumerate element.
The enumerate element causes a number option to be
added automatically to each verbal choice. Therefore,
the prompt output appears in the browser as:
CON: Welcome to the Cambridge Conference

Room Scheduling System.

CON: For database, say database or press 1.

CON: For without, say without or press 2.

(Note the unusual syntax of the enumerate element,
which is a ‘self-closing tag’.) Looking closely at the
choice option, we see:
<choicenextitem = “databaseForm”>

database </choice>

The character data between the tags – database – is
added to the prompt text. The nextitem attribute –
databaseForm – acts, in effect, as a go-to label. If the
response to the prompt matches either database or
without, the application control will jump to the
databaseForm form or the withoutForm form,
respectively. Similarly, pressing 1 or 2 will also jump
to the appropriate forms.

S e l f - c l o s i n g T a g s

Also worth mentioning is the enumerate element on
line 10. Unlike the elements seen so far, enumerate
has no closing tag, instead appearing as:
<enumerate/>

The slash (/) before the closing angle bracket acts as
the closing tag. This is common shorthand for many
elements that contain no children, such as exit,

calvit_supp.qxd 13/1/02 2:39 pm Page 148

disconnect, enumerate and reprompt, etc.
However, it cannot be used on all childless elements
and not on elements with children.

No Ma t c h a n d N o I n p u t

The user may answer with an utterance that is not a
choice, press an inappropriate number or simply not
reply at all. Menus must be designed to deal with
these contingencies.

VoiceXML provides two elements for handling such
situations: the nomatch element and the noinput
element. The nomatch element is triggered in
response to sounds that do not fit any choice in a
menu. The noinput element is triggered if a certain
time elapses (typically, five seconds) without the user
making a response of any kind.

The code as follows continues the menu element
started previously (the closing tag for the menu appears
on line 36):

13. <!—

14. nomatch and noinput elements handle

invalid user input

15. —>

16. <nomatch count=”1”>That was an invalid

choice. Please try

17. again.

18. </nomatch>

19. <nomatch count = ”2”>That was an

invalid choice. Please try

20. again.

21. </nomatch>

22. <nomatch count=”3”>That was your third

try. The program will

23. now exit.

24. <goto nextitem=”end”/>

25. </nomatch>

26. <noinput count=”1”>No input was

received. Please try

27. again.

28. </noinput>

29. <noinput count=”2”>No input was

received. Please try

30. again.

31. </noinput>

32. <noinput count=”3”>That was third try.

The program will

33. now exit.

34. <goto nextitem=”end”/>

35. </noinput>

36. </menu>

The nomatch and noinput element structures are
almost identical. Each has a count attribute indicating
the appropriate response for the occurrence. Between
the opening and closing tags of the nomatch and

noinput elements is the prompt text to be played to
the user. Though this example shows three nomatch
and three noinput elements, any number of each
could be coded. A menu element should always have at
least one nomatch and one noinput element. In the
third nomatch and third noinput elements, the
nextitem attribute appears again, this time in a goto
element. Just as with the nextitem attribute in the
choice elements, the nextitem attribute indicates that
flow should jump to another form, this time called end.

F o rm I d e n t i f i c a t i o n s

The menu choice at line 11 reads:
<choice nextitem = ”databaseForm”>

database </choice>

indicating a jump to the databaseForm. Below is the
databaseForm form, which utilises the id attribute
to set the form’s identification (ID). The form also
prompts the user and sends control to the end form.

37. <form id=”databaseForm”>

38. <block>

39. <prompt>This is the form database.

40. You will now be sent to the next form

without.</prompt>

41. <goto nextitem=”end”/>

42. </block>

43. </form>

44.

I n p u t F i e l d s a n d G r amma r

One of the most important aspects of voice interactive
applications is the ability to capture voice input. If there
is a limited number of valid inputs, a grammar can be
defined. A grammar is an enumerated set of acceptable
responses. When the user makes a valid response, the
value can be written to a field reliably and used later
in a prompt. This is different fro, a menu choice, where
the response acts essentially as a switch statement,
immediately directing the flow of execution.

The code as follows will capture the name of
the user in a field. If that name is part of the
established grammar, the application will speak it
back in verification.

45. <!—

46. In-line Grammars would need to be

built based on your company

47. directory. You must enter one of the

names listed in the

48. in-line grammar shown or replace the

grammar with your own.

49. —>

50. <form id=”without”>

51. <field name=”you”>

B U S I N E S S B R I E F I N G : W I R E L E S S T E C H N O L O G Y 2 0 0 2

150

Technology > Voice Recognition

calvit_supp.qxd 13/1/02 2:40 pm Page 150

Vo iceXML App l i ca t ions

52. <grammar>Casey|Eric|Jan|John</grammar>

53. <prompt>Please say or enter

aname</prompt>

54. <prompt>Your choices are: Casey,

Eric, Jan or John.</prompt>

55. <nomatch count=”1”>I don’t understand.

The program will

56. now exit.

57. <goto nextitem=”end”/>

58. </nomatch>

59. <noinput count=”1”>I have received no

input. The program will

60. now exit.

61. <goto nextitem=”end”/>

62. </noinput>

63. <filled>

64. <prompt>I heard<value expr = ”you”/>

</prompt>

65. </filled>

66. </field>

67. </form>

Line 50 is arrived at via the menu choice jump at line
12. The field, named you, is declared on line 51.
The grammar is enumerated at line 52 within the
grammar element. Each value is separated by a bar
(|). The prompts at line 53 and 54 are played. If the
user responds with one of the defined grammar
values, the field is considered filled and moves to
the filled element on line 63. This executes a prompt
that repeats the user name using the value for the
field. (Note that the browser does not play back a
recording of the user’s spoken response but, instead,
in this case, synthesises the name.) The field can also
be accessed as a variable.

If the user responds with anything besides a value
from the grammar or does not respond at all, the
nomatch element or noinput element moves
execution to the end form.

E x i t

The final form of the lesson simply provides a closing
goodbye prompt and exits the application.

68. <form id=”end”>

69. <block>

70. <prompt>Thank you for using the

Cambridge Conference Room

71. Scheduling System.</prompt>

72. <exit/>

73. </block>

74. </form>

75. </vxml>

Though the application would end on its own at
line 75, an exit element at line 72 quits the
application earlier. ■

B U S I N E S S B R I E F I N G : W I R E L E S S T E C H N O L O G Y 2 0 0 2

Introducing NMS HearSay—
the total solution for giving your

customers a voice.
Are you looking for new ways to drive revenue, build cus-
tomer loyalty, and keep your customers from jumping ship?

Then take a closer look at NMS HearSay. It’s more
than a powerful voice platform. It includes everything you
need to get your customers talking—hardware, software,
applications, customization, and support. And it fits
seamlessly into your existing infrastructure.

NMS Communications delivers carrier-grade perfor-
mance and scalability in a single, turnkey solution from a
single, experienced vendor—one that’s here to stay. So
you can give your customers fast, easy ways to make
calls and access information. Now and down the road.

Call NMS at 508-271-1000 or 800-533-6120. You
can also visit us at www.nmscommunications.com. Give
your customers a voice. And your business a boost.

How to
voice empower
your wireless

network with two
simple words.

calvit_supp.qxd 13/1/02 2:45 pm Page 151

